Search results for "Candidatus Tremblaya"
showing 3 items of 3 documents
Complete Genome Sequence of “Candidatus Tremblaya princeps” Strain PCVAL, an Intriguing Translational Machine below the Living-Cell Status
2011
ABSTRACT The sequence of the genome of “ Candidatus Tremblaya princeps” strain PCVAL, the primary endosymbiont of the citrus mealybug Planococcus citri , has been determined. “ Ca . Tremblaya princeps” presents an unusual nested endosymbiosis and harbors a gammaproteobacterial symbiont within its cytoplasm in all analyzed mealybugs. The genome sequence reveals that “ Ca . Tremblaya princeps” cannot be considered an independent organism but that the consortium with its gammaproteobacterial symbiotic associate represents a new composite living being.
The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps
2015
Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium "Candidatus Tremblaya" maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae), which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae mealybugs have "Candidatus Tremblaya phenacola" as their unique endosymbiont, while most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed inside another one) where every "Candidatus Tremblaya princeps" cell harbors several cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic consortium from Planococcus citri, co…
Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs
2014
[EN] Intracellular bacterial supply of essential amino acids is common among sap-feeding insects, thus complementing the scarcity of nitrogenous compounds in plant phloem. This is also the role of the two mealybug endosymbiotic systems whose genomes have been sequenced. In the nested endosymbiotic system from Planococcus citri (Pseudococcinae), “Candidatus Tremblaya princeps” and “Candidatus Moranella endobia” cooperate to synthesize essential amino acids, while in Phenacoccus avenae (Phenacoccinae) this function is performed by its single endosymbiont “Candidatus Tremblaya phenacola.” However, little is known regarding the evolution of essential amino acid supplementation strategies in oth…